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htfg k Abstract-Tis paper gives several basic results on dynamic nonlinear geometric approach allows us to choose a convenient coor-
networks from a geometric point of view. One of the main advantates of a dinate system and use it to derive general conclusions

. geometric approach is that it is coordinate-free. i.e., result, obtained b. a which hold with respect to any other coordinate system.
geometmc method do not depend on the particular choices of a tree. a loop

r- matrix. state variables. etc. Therefore, the method is suitable for studying Therefore, this approach is suitable for studying intrinsic
intrinsic propertiesof networks, properties of networks and it enables us to resolve and

It is shown that trans'eriality of resistor constitutise relations and clarifY a number of subtle paradoxes and perplexing ques-
Kirchhoff space is a sufficient condition for the configtration space to be a tions which lie at the very foundation of nonlinear circuit
submanifold. Main result of the paper state% that a network is locagls theory. In particular. several basic questions involving the
siokable. i.e.. the dynamics of a network is well defined in the sense of
Definition3. if and onht if, capacitor charges and inductor fluxes serre a a formulation of state equations for nonlinear networks are

local coordinate ysteim for the configuration.space. In other words , if all the herebv resolved in a rigorous manner.
variables in a network are determined as functions of capacitor charges and In Section 1I we will describe nonlinear networks in a
inductor fluxes, at least locally. then the dynamics is well defined. Con- coordinate-free manner. In Section III we will discuss
Nerselv. if the dynamics is well defined, then all the variables in a network transversality of the resistor constitutive relations and the
are determined as functions of capacitor charges and inductor fluxes. Krchh of a e

Because of its coordinate-free property, the main result also says that if the Kirchhoff space. Transversality is important in that it
dynamics is well defined in terms of some coordinate system, then it must guarantees the configuration space to be a submanifold.
be well defined in terms of capacitor charges and inductor fluxes. Con- We will give two perturbation results which guarantee
sersel,. if the d.inamics is not well-defined in terms of capacitor charges transversality. One involves element perturbation. i.e.. per-
and inductor fluxes, then there is no choice of variables in terms of which turbing the existing resistor constitutive relations. The other
the dynamics is well defined in the sense of Definition 3. Tlds shows that
capacitor charges and inductor fluxes are the fundamental quantities in involves network perturbations, i.e., augmenting the net-

describing the dynamics of networks. Perturbation results are given which work with capacitors and inductors. In Section IV we will
guarantee tranversality and local solvability. Finally, several other per- discuss local solvability which is a condition for the dv-
turbation results are given which guarantee eventual strict passivity of namics to be well defined. Main result (Theorem 1) says
dynamic nonlinear networks. They explain why the voltage and current that a network is locally solvable. ie.. the dynamics is well
wateforms of almost even neto~rk of practical imporance are eventuallN htantoki oai oval.ie.tesnmc swl

utaeo ,l o bounded eor defined in the sense of Definition 3. if and on/v if, capacitor
, ,, . .,/ '"charges and inductor fluxes serve as a local coordinate

. INTRODUCTION system for the configuration space of the network. This
I. INTRODUCTION means that if all the variables in a network are determined

T HIS PAPER gives several basic results on dynamic as functions of capacitor charges and inductor fluxes, at
nonlinear networks from a geometric point of view. least locally at each point, then the network is locally

One of the main advantages of a geometric approach is solvable, i.e., the dynamics is well defined. Conversely, if a
that it is coordinate-free. i.e., the results obtained by a network is locally solvable, then all the variables in the

4 geometric method do not depend on the particular choices network are necessarily determined as functions of capaci-
of a tree, a loop matrix, state vari bles. etc. Also, the tor charges and inductor fluxes. Because of its coordinate-

. -E - c'. l free property, the main result also says that if the network
___ .is locally solvable in terms of some coordinate system. then
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necessarily locally charge controlled and inductors are nec- Connectedness is necessary for tree to exist.
essarily locally flux controlled. This seems to explain why 2) Most of the results of this paper can he easilt, gener-
almost every capacitor (resp. inductor) of practical impor- alized to include the Lime-varying case under appropriate
tance is locally charge (resp. flux) controlled. After proving conditions. We make this assumption simpl to asoid
the main result, we will give a network perturbation tech- introducing complicated notations.
nique which guarantees local solvability. In Section V we 3) Lnder assumption (t) resistors can he coupled to each
will give several perturbation results which guarantee even- other and they need not be voltage or current controlled.
tual strict passivity of dynamic nonlinear networks. Theo- This includes virtually all modes of representation. includ-
rein 2. another important result of the paper. explains why ing the hybrid and transmission representations. In partic-
the voltage and current wave forms of almost every net- ular. a broad class of nonlinear dependent sources arc
work of practical importance are eventually uniformly allowed in this formulation. We regard independent sources
bounded. as uncoupled resistors. All multi-terminal elements are

Generul Remurk: For simplicity, we will usually delete represented as coupled two-terminal elements.
the superscript T denoting the "transpose" of a vector or 4) Under the present formulation. capacitors need not be
matrix whenever no confusion arises, voltage cr charge controlled. Similarly, inductors need not

be current or flux controlled. Notice that capacitors can he
!1. COORI)INAI'E-FRt DtiSCRIPIION OF NONLtINEAR coupled to each other and inductors can he coupled to cach

NETWORKS other.

Throughout the paper, we need to use the fact that 5) Coupling among elements of different kinds are not
transversality, local solvability and eventual passivity arc allowed. For example, dependent sources controlled b-
coordinate-free properties. i.e., they are independent of the variables of reactive elements are not allowed.
choices of a tree, a loop matrix, a cut set matrix, state 6) We need C2 property of A., A.(. and AI rather than
variables, etc. Here we will explain how nonlinear networks C1 because we would like to define C' vector fields on the
are described in a coordinate-free manner, configuration space. (See Section IV.)

Consider a nonlinear network N7 containing nR resistors, 7) Assumption (e) was introduced only for simplicit,.
nC capacitors and ni, inductors. Let r R(-'R. - t 1 ) and This involves no loss of generality in view of the results of
i= (iR, it, i,) be the branch voltages and branch currents, Chua and Green 111 and Sangiovanii-Vincentelli and Wangt
respectively, and let q and 0 be the capacitor charges and [21.
inductor fluxes, respectively, where R. C. and L denote Now let b- +Z c + n- and let
resistors. capacitors, and inductors, respectively. The fol-
lowing are the standing assumptions of this paper: A { ( , iq. )( t'R in) G .( t( .q ) E \ .(i, . ) c.,

(a) The linear graph 6' which defines the topology of A\
is connected. (6)

(b) !r is time invariant. Then it follows from (c) and (d) that A is a (t + n )-,
(c) The resistor constitutive relations are characterized dimensional C2 submanifold. Let

by

r. in)c An cR ()KR {(' i.q,)(ti i) satisfies Kirchhoff Laws}. (7)

where . is an nR-dimensional ('2 submanifold. It is well known that K is a (b # n( f nt )-dimensional
(d) Capacitors are characterized by linear subspace. This space is called the Kirchholfspact, and

(..q) E,.. C R2"' (2) is independent of the particular choices of a tree. a loop
matrix, a cut set matrix etc. Since I0-. i.q. 0) must satisf\

and the constitutive relations and the Kirchhoff laws simulta-
-q neously, the operating points are restrictwd to within the

di (3) following subset:

where A. is an n,.-dimensional C2 submanifold. Inductors " " A. (8) ,'-.

are characterized by The set - is called the copiflguration space of "N since this is

E t C R (4) where the dynamics takes place.

and Ill. TRANSVMRSA1t1 Y
d =(5) Since the dynamics takes place on the configuration
dt space !. the object : should be well behaved at least to the

where A,, is an n, -dimensional (' submanifold. extent that we can write down differential equations on it.
(e) There are no capacitor-only loops and no inductor- For that purpose, it suffices to require Z to he a differen-

only cut sets. tiable submanifold. A little problem is that even if .\ and K
Remarks: I) There is no loss of generality in assuming are perfectly well-defined differentiable submanifolds. their

(a) since disconnected subgraphs can be hinged together. intersection : may or may not be another submanifold. A
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sufficient condition for to he a submanifold is the Proof* It follows from a similar argument to the proof
transversalit, 131 of A and K. which is abbreviated b' of Proposition / of 131 that ArK if and only if for each
.\K. It is shown in [41 that if AK. then "" is an xE.
(n,. + n, )-dimensional submanifold. This is true for any C' q
sub ianifolds, r-- I. We first give a formula for checking B
transversality of .\ and K. Q

Since A is a C2 submanifold of dimension nr, hr each rank D Js DiJs 2h
point (rr,,, iR,)E'\R. there is a neighborhood UR CR -" of
this point and there is a C2 function I: Us -R "x such D,,.f Df.
that

A•f RD,,,, Df,A RntJR =IR 1(o) (9) X

and (18)
rank( DR..i,, =n R for all (ris) E Asn UR  where B is as in (15) and Q is the fundamental cut set

matrix. Since Q=I-B T : 1], one can show. by elemen-

(10) tary operations, that (18) holds if and only if 116) holds. F]

where (DfR),. i is the derivative of JR at (rx, ix). Simi- Remark: '3 need not be a proper tree. One simply has

larlv, for each point (* .q1 ) A. (resp. (it.. 1 )eA,). two more nonzero submatrices in (17).there is a neighborhood U4. CR", (resp. U, CR- ) of this If A,- and A,. admit special forms. then we can givepoint and there is a C function -: U 'L. - ' (resp..,'t.: more explicit formulas.
poi -ndR"' ) such that Definition /.- Capacitor constitutive relations A, is saidto be locally voltage (resp. charge) controlled if

A. ,'0,. '(O)(resp. A, n U,=1 '(0)) (11) rank(D .)=, forall(z .q). A /.1

and (19)

rank(D .)(,. . -nc,  for all ( q,.,q)E A ,.nUf. (12) (resp. k(D f) n for all (v( q) CA . n U

(resp. rank (Df,.),i,.O, n., for all (i,.. 0) EA, n u, ). where U. is as in (11) and (12). Similarly. inductor con-

It follows from (e) that there is a proper tree '5. Let t he stitutive relations At are said to be locall/ current (resp.
its associated cotree and let v and i be partitioned accord- flutx) controlled if
ingly: rank(DI,)f,.=n,, for all (i,. )A, n t,

(resp. rank(Di, f, i,. for all (i,.E)EA, t,)

" ." ,,i,). (14) where U, isas in (ll)and(12).

Let B be the fundamental loop matrix associated with 5T. Let wr: R 2b, , --R 2 "R be the projection map defined
Then by

B= [I : RI]. (15) ir t. i~q, ) -(tirs i). (2)

Set x (v. i.q.0). Let &: -R2 "'" he the inclusion map defined by

Proposition I. AM K if and only if =(t'i,q. 0)(i.q.d) (21)

rank5(x)=h. for all xE (16) and set

where ,R' O (22)

I( x) We next decompose B of (15) according to (13) and (14):
rR,, v i , i f q [ ,, R B ' (23)

D ,1_(O~eA)Rj Dei,+( DR )B/s ) 8- B,.R B,,
D,., f D., f Corollarv 1: let A(. (resp. A, ) be locally voltage (resp.

current) controlled. Then A MK if and only if
Ait A D Of, - rank ( tr .iR )= n R forall(r R.i ) Ef f( ) (241

(17) where

'(VR.iR)= [Dt.,JR (D,.,,f/)RRR (D,,cJ)Bc Di ,,fR +(D,,/)BaR (D,,R)a)g,.i,.. (25)

Here D,, JR denotes partial derivative of fR with respect to Proof: It follows from (17) that if A( Iresp. A, ) is
r., and • denotes a zero submatrix. Other symbols have locally voltage (resp. current) controlled, then (16) holds if
similar meanings. and only if
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(20) CW
Since o - -

f A nonlinear c i h A TA (a) J

1 F 1 (Capacitor cofl51,!Ulivc. relation is locailk wt'lagc omonl'td (c) (dpaciDiR = Di,, fR " jiR = [DifR "or constitutic rclaton is hocall, chargc conlrolkcd

substituting these and (23) into (26), we have (25). Since
(t, i) E 1. the vector (r. i.) must belong to ,rr(). LJ (resp. current) controlled. Then

Corollary 2: Let A, (resp. A,) be locally charge (resp. ('i) 'a -(DF)"),) - ( DF1)y)B,"
flux) controlled. Then \ iK if and only if [ -

rank 2(x)=nR, forallxCE (27) (al (DF)y,)HR( "t (IF)8)

where ()13 (DF)4.)B,R ()3. (D/)'),z )8/,,.

Z(x)- (31)

[o ,, -(D,,,, fRBRR i,, fR, (D~jR),B~ (DI,,jR)BR D,, f( ) 'Df( (D,' )/f, 8) f 'D,ij., (28)

Pro9I: If A. (resp. A,_) is locally charge (resp. flux) In particular, if A, is globally voltage controlled, then
controlled, then (D,. f,.) (resp. (Di, f,)) is nonsingular.
Therefore, by elementary operations, one can show that r)i)
(18) holds if and only if (27) holds. Ll

Example 1: Consider thc circuit of Fig. 1(a). wherc A, (DF) 1R 1 DF j , 11 *1
is described by q-g.( ) as in Fig. I(b). Then ' C) isa DF I [ 8DF , II BR .'

proper tree. BR( I and
R R(32)

and if .\R Is globally current controlled, then
which has rank I because of (10). Therefore. A 17 K for an.\
A, as long as it is a C2 submanifold. Suppose. now, that RR R

I'( :g(.(q) as in Fig. 1(c). Since g, is not injective .\ is H.
not locally voltage controlled and ('orollarv I does not
appl. In order to apply ('orollarv 2, we compute -( ) " ll

X (331
I[DIR ( )( )g., I

which may or ma- not have rank I depending on i./ and We can also give similar formulas for : ' hen A( (resp.
g( . If IR =JR( rR). however, the above matrix always has A ) is locally charge (resp. flux) controlled. We omit them.
rank I and A K. however.

Next suppose that A admits a generalized port coordi- Now suppose that ,\R is lohdl/v paranelrizable 131. i.e..
nate [3]. i.e.. A, is represented by AR is globally diffeoniorphic to R"H and write

(UR( PR ).IR(PR ))> 'R '( PR) PR tR (34)

1 :~ tI . F(t) (29) where 'PR: AR-. .R", is a glohal coordinate s\sterii.
Iefinition 2: .\ (resp. A,) is said to be ghloal/i para-

where a. p, y. andi 8 are 11, x n H matrices and F R"" inetrizable if ( (, q )C A, (resp. (i, O?)C ' ) is represented
R"N is a (' function. Recall the partition tR (tR' : tR , ). by
iR (iR i,, ) and partition a, P , y, and 8 accordinigly:

a -[a, a2j. [P 2

( 30 ,21 . , [,, ,/ . (3) (resp. (i,(p, ). 0(p, ' (p, p, CR

Also recall that A, is said to be globallv roltae controlled where J, : A R "- (resp. A',: .\, -"R"' ) is a global
131 if J iR, iq tr and global/v current controlled if j tR. q coordinate system.

i€. If AR, .\ and A, are globally parametrited. then A of
orollarv 3. Let A,, admit a generalized port coordinate (6) is parametried by p -(PR, A Pt ) and (i( . t,' ). We

representation and let A (resp. At) be locally voltage write this its x x(p. i( . t', ) .\.



Propositimn 2: Let .\, \,. and .\ be globally paranle- B elementary operations. one can show that 04) holds if
trized. Let ' be a proper tree and let !: be its associated and onl,, if (36) holds.
cotree. Then .\(K if and onl' if for each pER'. with Remark: Propostton 2 holds eNen when A. \. and A,
x(p. i(,. r, ) E V: are locally parametrized at each point, and it includes [51 as

rank T*(p) -nR (36) a special case.

where Suppose now that A 'K. Then it would be helpful if one
can perturb 'X in an appropriate way such that the result-

D'Re + BR,(DrR,) BR D'() ing network satisfies transversalitv. In the followsing we
DiR, - BR(Di5 .) B/ (Di, ) give two perturbation results. The first method involhes

R element perturbation and consists of perturbing the exist-
(37) ing resistor constitutive relations A,. The second method

Proofl First. observe that for an, xC.\ involves network perturbation and consists of augmenting
r 1 by adding arbitrarily small linear inductors and arbi-

trarilv large linear capacitors hN pliers-type entr%. and h

TXA - Iil Di ( adding arbitrarily large linear inductors and arbitrarih
Dq small linear capa citors by soldering-iron entry. tIherefore.

[ Dop ., r in the limit we recover the original network. Notice that
this procedure consists of adding parasitic capacitors and

Recall that the Kirchhoff space K is parametriied by inductors at appropriate locations.
(r .iq,): In order to give a transversalization result via element

r =Qr, B qR OCR" '. perturbation, let us first define a ( perturbation of .\.

This implies that Let M be a (2 submanifold of R" and let ('( At.R" b e
q the set of all (- maps froml M into R". Let FE Af.R")and consider

QI

'r.= K m B (39) '( F: (

ii F(x) G(x)" - (df'), (d()
G - : M-R"

By definition 131..\ K if and only if (d'F), (d(G) (x).

Dv] QrB
T  . .( for all x GAl

Di 7+ -
' " where (x) is an arbitrar, continuous function from Al into

Dq . I the set of positive numbers and d'F and d'G are the

Di to- ,, (40) second derivatives. These sets generate the strong (" topol-
ogv for (2. At.. R) [61. The set Emb2( .. I) of all ("

which is equivalent to embeddings of At into R" is open with respect to this

Dv Q' topology [61. Let -I( , ) be a neighborhood of the i nclu-
sion map such that all elements of i [1 ) are embceddins.

rank Di B' 2 1 + . Then a (- perturbation ii of M is defined b. V G( if
Dq I where G -)i 2(£t). The following is our first tral,-ersali-

D4, (P. i. r, (41) zation result via element perturbation. Although the proof
is similar to that of Theorem 3 of [31. there is a technlcal

More -ynlictv- this n atrix has the following form:
Accession For

PR P( PI i( C1 V, tI( JR, i, q

IrTIC TAB D.R HRR HR(

P r'n tee - Di~. 81 R B 4)Ju~it i fii t on-

Dr,,

N :.t,,' Di, '-1

A.1I, i tv Codes Oit
I. " ,'Ild/orDi B B/

o- c; Di, c ", ,I

Dq ,

D4,
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difference because of the C2 perturbations instead of (' we have
perturbations. ProoKf is given in the Appendix. (47)

In the sequel. denotes variables, functions, sets. etc..
associated with a perturbed network. where C, and L, are the capacitance matrix and induc-

Proposition 3: Given a nonlinear network A let AK tance matrix, respectively. of the added elements. Since
-k0 and A,'K. Suppose that A( (resp. A,) is locally (r,. ,q.," corresponds to open-circuiting branches of
voltage (resp. current) controlled. Then there is a perturba- (' and short-circuiting branches of 1, and since such a
tion AR of '%R arbitrarily close to .\R in the strong (2 situation is contained in k, we have (47). Next. since no
topology such that .knK:6 0 and kMK, where .k is resistors are added, we hase
defined b% (6) in which \R is replaced by ,:R.

RemarA: Recall Corollary I where A(. (resp. A, ) is A {( .i.4. )I(,.i.q. E)E.\}. (48)

locally voltage (resp. current) controlled and observe that
- depends only on (tR. ix). This is the reason why one This implies that

can transversalize A and K by perturbing AR only. e )

The next result gives a transversalization procedure via (rh. t . ) .\ (49)

network perturbation. which together with (47) implies i).
Proposition 4: Given a nonlinear network ,N let A.nK h 4(ii) In order to pro,,e k ?k. "e conpute J( .i")otf(17} for

=# and .\.XK. Let -, be a proper tree for " and let C be -(i)IoretopoeA .wecmue( 0(7frits asniaed cor. Pt"a ro er tree and t C and "'. Observe that fundamental loop matrix B for " associ-its assoc:iated cotree. Partition '5 and '_S as '51 R. U C" and ' -

C- R U L. respectively, where R. C. and L denote re:,is- ated with the tree assumes the following form:

tors. capacitors and inductors. respectively. Insert an arbi- t t' t r ,'
trarilv small linear capacitor in parallel with each branch I
of R. and insert an arbitrarily small linear inductor in [ I (50)
series with each branch of R, . Then the perturbed networkI Bj( B, 8
'. satisfies the following properties: (i) A n o. (ii) I BR( BR,

Proof: Let (' denote the branches representing the where the submatrices in (50) correspond to those of B for

capacitors added in parallel with R and let L, denote the '0i (see (23)). The sign of the identit\ matrices in (50) arc

branches representing the inductors added in series with chosen merelh for convenience and in\olhc, no loss of

R . Then ('U( 1 u R, is a proper tree for 5z and generality. Next. notice that

r" 1 u l.u uR is its associated cotree. Let JR =fR. (t". iR) ( ti, )

R,I. r, . tR,. t . i' DR .rJ( , .R

S iR, iti t : i. e. i .i(, (43) Dij D ,f. D ] Di,, 1 .

qq). (Substituting these and (50) into 17) we have

D .R, . ,.,R D,,R Di, f

D,, , D f, ,

L I  I

he the variables of N r. Let It follows from (I)) and (12) that

it..q,. 0,) .\C) K 0' (44) ranklD,.., D R D,JR " D, ,,fRI,, FI
tr,, (|st/ t'NP. R

(45) rankD,, f Dqf 1,, 41 ?1(

i, ( . i .

We first claim that %,ith rank[Dijf, D , 1, j, , n

r ,..0 r r. for all (tr. ix)-A R. (t*( .q)Ez.\( and (il. ?)E .A,. respec-
...0 t

R '.C tivelv. It follows from (51) and (48) that

4, ) qi r '.' 'R 0) (4f) rankc(i) n 01 +nnd I +are ten
40, ( .q€,, ,. Ci rR )J for all .iE±, where n,., and n,, are the number of capaci-
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iR 0? - t0 : 'F? -

.0 it'RO R20 1  ~o
(a) (b) ta) (h) (.)

&Fig 2. A nonlinear circuit with ATA (a) The circuit diagram (6) Uig 3. A noninear circuit % hos locl solhabilit deperld' on resi't"o
Re stor cmnstitutiw relations constitumtiv relations (a) The circuit diagran -ib Rcsilor :oinftitutic

relation where tle circuit is not loatll so lahle (c) R ,isor olnstltu
mse relation where the circuit is tocalls sol i:h.

tors and inductors added, respectively. It folhws from matrix for is given b\
Proposition I that D r K. ri

Example 2: Consider the circuit of Fig. 2(a) where the rA t'R r1  r( t'
resistor constitutive relations are given in Fig. 2(b) with

1 , , ), A 1.2. Then 1 R, RI is our proper treeI. I
and HR= BRI B, 1 0.' BR - I1, B8( R

8 1 8 1R

DIR DIR " D"'IR = -  where the submatrices are those of .'Z . Therefore.

Df Z j D Q D;IA . D XR xD. i f .) ('. ij,).

Therefore (17) is given b,* Substituting these into 17) we have

~~R ~ , 6Jj~ D., fR)IhA D, fR
-- .,,.,,. .i)J . I

Now for the value i, in Fig. 2(b). we have iR :.s , ) t " ~ i,, D) ,
-tfR.(r R:,) and (D.R, ..... = (DfR ) 0. Let

(r,, iR,,) - ('R ,,.'r ',,i*-'*)I t ' R,,, , i* Bv,' using (12). (52) and elctientar, operations. one C n
sho\ that rank :(.' "Rt " ' 'I " n '/ for all i .and L .i Then ( L'.I ij R , I ( 0 where n,, is the number of capacitors added. Iherclore.

and rank ( r ,. i(,. 0,)- 2<3 and hence .AK. Insert. no%%.
( and (', as in Fig. 2(a). Then Proposition 4 tells us that Proposition 1 implies that .\ ,.

.AK. A dual argument show\s the following:

The transversalization procedure is simplified if \, is Prol,siton 6: 1rnder the same ,etting as that of rll
locall, voltage controlled 131, i.e., 19) holds and fl.Uit 4. assume that .R is hocall, curren Iontrtiled.

Insert a small linear inductor in series ., ith each branch of
rank( DIR iv,.i. inR for all ( r'. R) R L' R, . Then the perturbed net\%ork "N has the follosing

(52) properties: (i) A r K -c- .(it) .A ihK.

or locally current controlled. i.e., (9) holds and IV. Lo(At Sot \ A11.1 t1t

rank J D. )j,. nR for all t 'R 
1i ) .A r . Recall that transversalit\v of .\ and K is a sttit condition

in the sense that it has nothing to do with the d\ natics of
(51) .V In order to motivate the discussion of thi,, section \\e

Proposition 5: Consider the situation of Proposition 4 first consider the following exattple.
and assume that A, A is locallv voltage controlled. Insert a E',nph, 3 (onsider the circuit of Fig. 3a Mhere A, is
small linear capacitor in parallel with each branch of R . given h Fig. 3(b) ith \% t R go ). If \e choose', C, to
Then the perturbed network 'A satisfies the following prop- be our tree. then BR I, I), f, I. , I), and
erties: (i) .\NK:- :" and (ii) .\ /K. rank .(t  r ,/ - ranki I J) , It follo\,s from

Proof: (i) can be proved in a manner similar to that of (Corol/arr I that A.\ kA and' is a perfecl, well-defined
Propoittwon 4. It is clear that '( CU C is a proper t rec for one-diniensit nal sublanifold. Thc d, na.lics. hov ,s lr ha,
"L and I R UR U1, is its associated cotree. \\here (, points \%here it is not %\ell defined. Io sho\\ tht, obserse,
represents the branches of the capacitors added. Io corn- that 1 , serves as a global coordinate for !. ic..
pute i (.x ). observe that the fundamental loop ( r r(. t( -i . q) ( gpo IR). tRo , R 1. 1 H .R1. , .i.

where ( is the capacitance. (Not ice that I- canlnot iCT\ c j,

'%c dente a 0 - o friatrix , . a coordinate.) In terms of this coordinate, the d namics is
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given by two-tensors on a general manifold since manifolds gener-
C d t g. 5) dIally are nonlinear.

(54) Let r* be the induced map 161 of ar. Then *rt* pulls G
hack to X2 by the following formula:

Since (D )  ,, =(DgR)... =0. 
differential equation (54)

is undefined at'iR =JR," and iR =iR.,. Then one might like (er*G)x(,i., 2 ) G,,,((dr)Ai.(der)A 2 ) 15q)
to choose another coordinate and check if the dynamics is where .2 E T,. Similarly, let &* be the induced map of
well defined everywhere in terms of it. If it fails, then one i. Then
may try to choose another coordinate and repeat the same
procedure. The problem, however, is that there are, in (6()

general, infinitely many coordinates. Therefore. well- is a one-form on -" defined by
definedness of network dynamics should be defined in a
coordinate-free manner and there should be a method of
checking that porperty in a coordinate independent manner. A coordinate-free description of the dynamics is given bx

That is exactly the problem of local solvability discussed in the following:
this section. Proposition 7: Let : be an (n, +n, )-dimensional C:

We will first show how the dynamics of a network is submanifold. Then the vector field X2 describing the d.N-

described in a coordinate-free manner. Let %': R ' .. namics of network satisfies the following:

-R"'", be the projection map defined by (e*G) (X.,.)=o,(,), for all k . (62)
r'(v~i~, ck)=(q gp)(55)

Remark: An easy way of understanding (62) is the fol-
and let lowing: Let A be a symmetric n "n nonsingular matrix.

a 1'oL (56) Then (Ax, y) is a symmetric bilinear function on R" -R".

where t is defined by (21). This map is the same as the where (..-) is the inner product. i.e.. (Ax. ) (x. AIY).

restriction 17': of w' to X. Consider the following symmet- and (Ax, ) and (A , y) are linear. For a vector e R"

ric two-tensor G on R +", "': the formula

.... , (Ax. .) (w. y). for allyr R'
G dq,®dq, - E d4,,®d-, (57)

A I A-I uniquely defines the vector x - A 't. If the netxuork is

and the following one-form on R 2'
, 

' . reciprocal and if P denotes the mixed potential. then w of
, , (62) is given by w dP. differential of P. If (q. 0) serves as

(- idq, - v t.,dp. (58) a global coordinate system for E. then

Al~A idq 1A

Remark: A simple explanation of one-forms is given in XX =  -dt.t
131. A symmetric two-tensor G on R2 is a collection of
functions: R 2 YR 2 ---R given at each point ( C. .R. ,'I,
by o = l(.(q. q-) dq, V .,q.0),10,

. = f,,,(x., )dx,,®dx,, where F,. and F are determined bv

where f,,, are real-valued functions. f,, =f,,, and (i(. -

dx"®dx1 = f[l"  "f"d\ d\= j .I] (F;,(q.(l),'. .(q.q)). t, (q,,). ..l (q.q))).

4 h2 ® t hl ~ t i l x ®dx , 1  =T h e r e f o r e . ( 6 2 ) is r e d u c e d t o

dq5

Consequently. 
( (q.

r;, .... ,([ ] .[I 0 l l ,(. ,. ,) ,ti(,
adt -i (q. ). / I " .n .

where we look at a matrix as a map: R 2 \R2 -R

satisfxing a amr Proof of Proposition -: Let

a dV ) ) ) ( a j(,) (der)J< '- ( .. , . .... I ). (63)

Therefore. G can be thought of as the matrix-valued fune- A ctor ficld Io n manifod is a f intion 11ki" , Jtt.t t11 1j-ia, llc % .

tion I ,,,"].One needs to be careful, however, in defining nhtutall generate,'a r,, . t t i i sc othi t it .A,,,
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Then. by definition, the left-hand side of (62) reads (62) that a vector field X. is uniquely determined h,

(,*G X., G;,( ((dir) )x,(adr) X -( J) 'WX (68)
___ Lo " In order to show that X is C'. recall definition (59) of TG.
dt dr Since "" is (.2. the map drt is (". Therefore. (J , ) ' is ("

Similarly we is . This implies that X determined b, (6) I,,

(- dqA®dq dop®d ) C'. ('onxersel,. if J, is not an isomorphism (62) cannot
A I A I determine a unique vector field. -

(iqd'Lo Remark: In Example 3. in terms of the coordinate i". we
• I ,,have (ir*G),= C(Dg,), diR®diR which becomes singular

ti dt %when (Dg ) <(Dg) )

"' dqA - " dx Proof of Theorem 1: Recall definition (59) of rt*.

SZ~, d -~(- 64) Since G,,,, defined by (57) is always nonsingular in the
A I kIt sense of Lemma 1. we see that ( ir*G )_ is nonsingular if and

The right-hand side of (62) is given by only if the following map is an isomorphism:

(L*t( d , o id- .d ((dt).) i.e.. r" is a local diffeomorphism at x. But this precisel\
Al 1 A (

means that (q. 0) serves as a local coordinate sstem for xi
itY ,< dqk VI j I , (( i ) at x. .

k a .Remarks: 1) Because of its coordinate-free property.
1Theorem I is of fundamental importance. It sa\s that if all

-- , j- , * 65) the variables of a network are expressible in terms of

I A I capacitor charges and inductor fluxes, at least locally, then

Equations (64) and (65) together with (3) and (5) imply the network is locally solvable. i.e.. the dnamics is "ell
(62). defined. Conversely. if the network is locall\ solvable, then

Proposition 7 and Example 3 naturally lead to the follow- (q. ) necessarily determines all the variables in the net-

ing definition: work. Another important interpretation of Theorem 1 is

Deimnon 3.- Given a nonlinear network -N assume that that if (62).uniquely defines a C' vector field with repect
san ( +, -d l (,2 m id Then N ito one coordinate system, then it defines a unique C'

said to e localh volrable if (62) uniquely defines a C vector field with respect to capacitor charges and inductor
said to be loa/ ate if (62 fluxes also. Conversely. if (62) fails to specify a unique C'
vector Xne f respect to (q. 0). then there i ecs no choice of

Remark: Local solsabilitv defined above is a coordinate-with

free version of the one in Chua and Wang [71. If A( (resp. variables in the network in terms of which (62) specifies a

A,) is globall voltage (resp. current) controlled, this defi- unique C1 vector field. These observations show\ that

nition coincides with regularity of Smale 181. capacitor charges and inductor fluxes are the fundamental

We are now wiadt reuatythet of e p . quantities in describing the dynamics of a network.
Wearet I.- ready to state the main result of this paper. 2) Let us explain why A must be (,2 in order to define aTheorem 1: (Given a nonlinear network 'N suppose that C vector field by uigasml xml.Cnie h

E is an (it +nt, )-dimensional ('2 submanifold. Then - Is orfi using a simple example. Consider the

locally solvable if and only if. at each point xel. (q, 4) circuit of Fig. 3(a) where A, is given b. Fig. 3(c). Assume
serves as a local coordinate system for N. that g, is a global ('I diffeomorphism. Therefore ,

For proof we need a lemma. Recall (ir*G),(.. ) defined h,(tR,). where h, =g, I and h, is also a global C' diffco-

b (59) is a bilinear function on T.,X T :. morphism. The sets A and : are (' submanifolds. (apaci-

Lemma 1: Suppose that "" is an (n( +n, )-dimensional tor voltage r( serves as a global coordinate for . and the

C' submanifold. Then .' is locally solvable if and only if dynamics is given by

at each point xE!:.(1r*G), is nonsingular, i.e., dr h,( --r('1 (70)
(,r*G),(e. 2) )0, foralle TX implies k2O, dt C

(66) The right-hand side is ('. Now it is clear that 1
R is another

Proof: We look at (ir*GlI,(. -) in a slightly different global coordinate for 2 and the dynamics is given by

manner. Consider the map J, defined by diR - _ (71)
J,: jl- (%*G ),( l.). (67) 1t ( Ogo ") , "

To each J,. the map J. assigns the linear functional' Since g, is (. the right-hand side is only (". This gives
(v*G),,.v -) on T,,!. A linear functional on T7Z belongs rise to a problem because a C" vector field cannot guaran-

to its dual TX _. This means that J. = (,a*G),(,. -) maps tee uniqueness of solutions. If we assume, however. that g
T1 into T"*X. It is clear that (66) implies that J, is an is a (', global diffeomorphism. then the right-hand side of
isomorphism and. therefore, it is invertible. It follows from (70) and (71) is at least ('. Therefore. ('-ness does not

depend on the choices of coordinates. More generally. let X
'A linear functional is a real-valued linear function, be a vector field on I and let (U n X, J') be a local chart at

*AJ -
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xE e. Then a natural coordinate representation is where

If (VCY. ) is another chart, then for x E'fl U 'n , one Kt ((r.i)ER 2"I(vri) satisfies KVL, KCLi. (74)
has

,o 4,))X Let A( and At be characterized as in Corollar 4 and
define

G( - CM t,,(v )dr,.®r_ -dr L,,,(i, )d,,.®9di1( d ( Oo4 ¢ ' ) ) ( X ( 4 ) € , .. . . I .. .. I

Therefore, if we want X( ) to he C" independent of the where

choice of coordinates, we must require the change of [(',,( -=(Dg, ), [L,,,(i, )J (Dg, )i,, (75)
coordinates d(ooj ') to be C'. This requires 0o4 to
he at least C- '. But this is exactly the condition required Let R,: -- R" ' be the projection map defined by

for X to be at least C' '. Therefore. a ('" vector field can rt(t. i)-(tv .i, ) (76)
possibly be well-defined only on C' manifolds with s>r.

3) Observe that ('-ness of vector field is required in and let ti: -"' -R 2 ' be the inclusion map. FinallN. let
order to guarantee uniqueness of flows because a C" vector ,, ,,
field, in general. does nol suffice for generating a unique t- t-/" di d t(. I(.

flow. Roska [9 obtained several uniqueness results in terms A I
of the network topology and resistor constitutive relations. Then the vector field X which describes the dxnamics is

4) If dim--n(--nti,. then (dr), of (69) is always given by [10]
singular and (62) cannot determine a unique vector field.
Therefore. transversalitN of A and K is one of the im- ( rt*Gt),. ( X*... ) - ,( " ). for all i E I", e
portant conditions for local solvability. (77)

The following shows that the results of [5]. [8], and [10]
are a special case of Theorem 1. where wt - i* n . Let F: - _ be the (global) diffeomor-

Corollarv 4: Suppose that A, (resp. A) is represented phism defined by
by q-g,.( t ) (resp. O g,(i, )) and suppose that ( Dg,). F( v. i)=(t. i, g( . g,(i ) ). (78)
(resp. (Dg, ), is nonsingular. Let E be an (( + it)-
dimensional C submanifold. Then '( is locally solvable if Proposition 8: Suppose that the assumptions of Corollari

and onl"v if at each point x E 1, (v(. i,_) serves as a local 4 are satisfied. If .\ is locally solvable. then (62) is reduced

coordinate system for Z. to (77), i.e..

Proof: If (Dg(.),. (resp. (Dg, I, ) is nonsingular. g, ,. 0 (dF )XXr(. . (79)
(resp. g, ) is a local difleomorphism. Therefore, (v(.. i I)

serves as a local coordinate system for : if and only if Proof: Let X,,,., be the vector field determined by

(q, 0) serves as a local coordinate system for 1. , (62). It follows from (78) that

Remark: In 15. []. and [10]. (Dg, ),. and (Dg,) are XF,.i (dF)(,lX 1 tl (80)
symmetric and positive definite. Therefore. they are non-
singular. for some X(',,) - (X,. Xl )c T,, ,)V. Let us write

The following is an example of a locally solvable circuit Xt -=

whose capacitor is not voltage controlled. X , . X, ) ( ' X. ,

Example 4: Consider the circuit of Fig. 1(a) where A is Then
given by Fig. l(c) and A, is given by , =gR(tVR). Capaci-
tor charge q is a global coordinate for E and the dynamics (dF),i)X,'d, (XX',, Xt.(Dg, ) ' X .(Dg, ), X
is described by 4=gR(-g.(q)). Clearly, this circuit is We will show that Xt is the same as the one determined
locally solvable but the dynamics cannot be described in enthterms'f v, .from (77). To this end note that for JET,!., there isaterms of vi.., T.IZsuhta

We will next show that if the assumptions of Corollar 4 C E T such that

are satisfied, then (62) is reduced to a formula in 10]. To t=(dF),,.', t = . , .(Dg, )iC J. (81)
this end let We substitute (80) and (81) into (62). Then the left-hand

Y.=A'fnK' (72) side reads

2 dqkgdqk - do,(9d o, (d( u ),ff - F Xt , ff ,,( l F ) ,.J
(A A l) ..1 1

n,")= , ,:2 ,,,( ,-I J, ,-, C,,, vc ,.. - , ,::2 ,,,l t '; , ,L,,i ) *, (82) lf



%%here "ke used C5). Fhe right-hand side turns out to be %% here B, Q, etc., arc as in IS). Since 1 1 C (0. s 
,, ,,, have 131

'' ~ ~ v v 111 1)L." , ;. Kcr (IG, i 3

(<3) It foll ois from 19)) and 193) that tle nii \ of 90) i,
lionsin-ular if" a.nd ollIN if'

Since (d(r F )),..j. since (i d )(,., i.s nonsingular and Lh

since - is loalH, solvable. i.e., (di) -,,* is nonsingular, Ker(Dir'), 'Kcr(DG}, 0 (q4)

there is a 4' such that which is equivalent to

( ,,( 0¢ ., l,, ,(i ) I -0 (84) rank Di 2-(,,, 'I. I f 2! + ( ,n .( 5

where Spew - I if in it and 6ni 0 t- ' f m =-. ('omputing the mattrix of (95). one can Sho'.% that it has
Substitution of ($4) into (82) and (S3) giis rank 21)4 n, -e ll if and only, if the folloin g matri\ hl'

rank 2b:

SimilarlN. there is another vector s such tbal B

,, I . ..... (A ". A(8,A

Substituting (86) into (82) and (83) we have • ,.

L,,,,,il ). ,, /, (8;7) " ,./

The vector field V,,. A' determined hv (85) and (87) is B\ elementary operations, one can sho" that this nmtri\

exactlN the same as the one obtained bh (77). - has rank 21, if and onil if (S8) holds.
We will next gi\e a simple formula for checking local This result has an Interesting consequence. Let r•-

solvability of '.c Let A. . andf, he as in (9) (02). ', (resp. it• " 2"" ) be the prkleciion imap defined
b\ q( (x) (, .q). (resp. ir 4 P ( ii .-

Propsj.oton Q. Let .be an ( ? n, )-dimnensional ' ('C'orolh'i 5: If -N is Iocail\ olvablc. then

submanifold. Pick a proper tree "Tand let I be its associ- det(, ), (. 0 for all (v, .q I 7 ) ,
ated eotree. Then '. is locally solvable if and only if

and
det K( x)r4=O. for allx FC (88)

%% here de D , ), . 0, .0, for all (i . 1:r, ) . QSi

Proo: Since (,, / ,ld Pre,, N, qua e
matrices (8 ) forces, (97) and (98) to hold.

C(.r - D,. f Remark.- The abose result sa s that if ' is )ocal\
solvable, then tpailors ini.t hc to(al/i (haric' (,o ,',ihJ on

Di, f, j r(( E) and ?sductor., a t',c 1a/lh fu.\ ,,t'lcld on

89) Ir1 ( ). in other words, if capacitors are not locall\ charge
controlled at some poiit (q< .q,, )C, ) or induclor' ai

Proof: Let4, U be a local chart for - at x. I'hen not locally flux controlled at solme point 4it ', l.
(dwt)r is an isornorphism if and only if ( D(,, Is 4 )) is a then there is no hntce of local coordinate s% stem in htrms
nonsingular matrix. Since ,r'o ' - o o 4 . we have of \which the netwkork is locall\ sol\able. This secms t,

(4€ i)),. (Di)r'), d~,(O D ,,,.(90)) explain %h\% e do not find capacitors iresp. inducIors of
practical importance which are not localS char-'c 4iesp.

Since (d), is a linear inclusion map, the matrix of (90) is flux) controlled.
nonsingular if and only if Importance of local charge (rcsp. flux) controllcdnecs is

Ker( Dir'),l m (P (1 ) further emphasi/ed h\ the follo\ming:
(oro//arr 6: Suppose that .\ (resp. .\, I is described b\

Let G: . '-R 21 ' be defined hb q -g( ( t' ) (res.p. 0 g, ( it )) and suppose that ) t- . it I sers es
as a global coordinate systen for !. if detl ( Dg, t' 0 for

Br. some t-, .t R",' or tlII( Dg, )j, 0 for some it  then
vi 0i is not locall\ solvable.

G(x) IR( t'R ) (92) Iroof If v t, i, ) sCr\es as a global coordinate s\steill
for -e. then (t,.g (t", I)Er, ( ) for all t'v, t R"' and
(it. g (it))C -a (4") for all it ER"'. Therefore. ( orvlari 5'

f,(it 41) implies the result.
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()bser e that tile above result sa.s that eien it ( I-, it I / gR 9R, t

rrt,' av a gtlobal (oordlttlt ' ilc for !:. a i t'A ork lal

not be locall\ solable. Ilhe llolh ing example hn,, the/
case in p0.nt.

xamlph 5. Consider the circuit of 1 1g. l(a) v% here A, , 0 -"

, cn b% Fiu. 1,c). As %kI shokn in -Xample I..\ fA .
ahta,, holds for an1\ , as long as it Is a (2 submnlMf1Jd.

zI ! , 4- \X ti lit'l.il , .'~t m t~ h hd i, i RLa l. ,,ld v 4 I t' , 1,

Suppose that ,A is described b\, r ,. I hei) I l 1 t, ri, t'r'c~tl, h) P'.,tlo f"1ont,, Icli ...

sCr\e as a global c:oordinate for -. Since there are points

here tI), ), t. thi, c.ruit is not locall I\ Shable. m s here n 13. y. and 6 are as in (2L). In particular II' \ A
If ve kros that tresp. + ) is, hcalls charge. (r,.,,. glohall, ,otage controlled. then

flu\) controlled. then the lormula in Pr,',itin 1 is sim- r
plified as ft litoss s: * BAA, HI10

(,,rollari 7 In the same setting as i I',iropsiin t" i)) /" I 1

asstile that \( iresp. \, I is localh charge resp. flux) '
controlled. Then N is lo,.all% soksible if and onl\ if and if .\ A i globallk current controlled. then

det X ,( , . i, I). fo.r all -. . ,' . \_A > (I , Il [ B ]

where i is defined bh \2 and '
t
J( t',. iA A (DF I

D,, / I,.A)B, . A +AD. [B/A] ,. Rcall (34). 35 and the notatioii used InI Prop'',1 2.
Pr,,lpsitn IM lI et .\ A .A. and .\ , be globall\ param-

(1 Ct) etri,ed and let : be aI (I , n' I -dli n sional ( ,sUhlitlill-

Proo. If the aboe hxpothesis IN satisfied. D,. f )_ q, fold. Pick a proper tree - and let . he its associated cotrec.
and (D, are ihnslingUlar. then one can slio\ that Then " local, sokable it and o1n]\ if for each pi3S'
(9)) is equi\alent to (,88). , ith x p . i . Iv .

RemarA, In [51. [81. and [0]. .\ (resp. A, ) is repre- detX'Ip I )) (1041
sented b\ q g( (t-,) resp. 0 g, (i )) and ( DgK ), (resp.
Dg, )j, ) is positive definite. therefore.. A resp. .\ ) is Vhere

locall charge (resp. flux controlled. J*(p
E.amph' 6: ('onsider the circuit of Fxamplc 3. Since

( A 
1 1 

- ) 1 gt,, it fails to ha\e rank I at t, t  Dt.- B,,(i D A.) B,( )t-
and IR ' and. therefore, this circuit is not localE solva-
hie. Di, B',( Di,, B/A. Di, I

Exanp/' -: Consider the circuit of Example 2, \%here Dq
A, is giken in Fig. 4(a) \%ith i8. g( t ., A 1.2. Since DO

Iyl (VR' I ] ( 11151

I , Proof: Substitute 34) and (15) into KVL and KCL:

and since DgA, and DgN . never vanish simutaneoush. rank t-,) PA I
t. i, )2. Consequently A T K and 1 is a one-

dimensional submanifold. Since •0 (l))

X('. i ) DY, ,.I c, (p, )

there are points where det (CR( t
R'.R) O. Therefore. the i'(p

circuit is not Iocalh, solvable. If we use (orollarv 4. we canll B/t€ Bil I i,(P I)

see this more clearv. Consider the projection - of v onto B 0. (107)

the I , .i, )-space gien in Fig. 4(). If we further pro.lect R,

onto the i, -axis. we see that i, cannot be a local coordinate
where the curve intersects itself. Therefore. ".' is not localE, Let us %\rite (106) and (11)7) as
so lv a b le . H P (0 l s(orollarv 8: Let A, admit a generalized port coordinate !t1 .i( , I 0 (108)

representation and let \ (resp. \ ) be localh charge lhen - is diffeotnorphic to If '(10. B\ a similar argument
(resp. flux) controlled. Then to that of the proof of Propowtut Q. one sees that (Io) is

X(..i [(a. (Dt) 7 4-(., (DF~ B, (fi (fl ,),( ()-yl, '8,, (16')1

iA -AII "
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Fig. 5. A nonlinear circuit %hich is hkalh ,oltible. cr i, not
diffcomorphic to R"

nonsingular if and only if (i[ jx]. y, : )1i - x as !( v. z x. Hence F is proper 161.

[ D Consequently it is an embedding (61. Definern[D't I Ab+n 1 .+-tn1 . (109) \ i{S R '

ran Dv'" -pl ,A, ) -- t 1:

Computing the matrix of (109) and using elementary oper- tR, -e' cos . r e'sinic, U.
ations, one can show that (109) is equivalent to (104). E

Remark: The above result holds even when A,. A- and I y co, . .s " - sin x, (Ill)
A , are locally parametrized. This is

Now, observe that )C(x) of (89) is a submatrix of Y(. a parametric representation of A. Consider the
defined by (17). This implies the following: .rcuit of Fig. 5 where A R, is described bV (Ill ). It follows

Proposition I]: If (88) holds, then AMK and >' is lo- from the above argument that AR is a three-dimensional

cally solvable. submanifold diffeomorphic to S' x R2. It is clear that X- is

Remark: A similar result holds for Proposition 10 and diffeomorphic to A,. and therefore diffeomorphic to S'

Proposition 2. Observe that while Proposition 9 assumes R'. Notice that p,= (x.:) always serves as a hoal

that E is an (n( -n, )-dimensional C2 submanifold, Pro- coordinate system for A, (not a global coordinate sstem.

position 11 does not. however). As we remarked earlier. Proposition 1(0 holds

In many practical networks. v is a global diffeomor- even when AR is locally parametrized. The matrix of (105)

phism. i.e.. all variables in the network can be globally is given by

expressed as a function of (q.0) and hence : is globally 'X*(p)
diffeomorphic to R", "I. Of course -\ is locally solvable.
In Example 7. '( is not locally solvable and : is not -e'sinx e'cosx
diffeomorphic to R. A question arises; Are there networks e cos. esinx - ,
such that 1 is a submanifold not diffeomorphic to R"' ""I
yet they are locally solvable? The answer is affirmative as
the following example shows. 1

Example 8: Consider the map F: R3 -. R' defined by
F(x. v, ) cos.e'sin x, , .cosx.sin x). For x. x'E( 1
R. define the equivalence relation x--x' by x-.r' 2k
where k is an integer. Clearly, then, the quotient space of R
with respect to this equivalence relation can be regarded as Since detX*(p) = -- e' *0, -N is locally solvable. Conse-
the unit circle S' in A2 ; A/ --S2. Let ] denote the quently. the dvnamics of "T is perfectly %ell defined on E.

equivalence class. Then F naturally induces the map F: yet there is no global coordinate system in terms of which

S1 XA -R 6 by the dynamics admits a global state equation because
S S 2 R 3.
([x] y., z)F( x. y. z). (110) Next, we will give two more examples that are of inter-

Since est.
Example 9: This example shows that there is a nontriv-

e'(- sin x) e "cos x ial locally solvable circuit whose inductor is loall , flux

e (cos x) el sin x controlled, but not locally current controlled. Consider the

circuit of Fig. 6(a) which consists of a I-S2 linear resistor
d i " 1 and a Josephson Junction device characterized by t, -

k, sin k,0, where k, and k, are constants (Fig. 6(b)). This is
-sinx cosx a flux controlled inductor which is nt Iocally current

controlled. One can easily show that transversalit, and
and since local solvability are satisfied.

' Example /0: Here we will illustrate a power of geomet-
e( -sin x) ecosx •ric approach using an interesting example of (iix'knar 1) 11.

det| e'(cosx) e'sin x =el":#60 Consider the circuit of Fig. 7(a) where the resistor is linear
142 and A( is characterized by

we have rank (dF)l,:) 3 for all (jx], y, )ES X.R . t( =(q-Q)I +E 4g((q) (112)
Therefore, F is an immersion 161. Clearly ' is injective.
Since if([x1, y, z)llI e2V + z2 +y 2 + 1, we have where Q and E#O are constants. Since 'i(x) of (17) is
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[L. k Sr cause (r, -- E) 3 + Q is not differentiable. (it is not even a
C' diffeomorphism.) On the other hand the map:

", ,a VL' P w( /ct,,/~ .q

"L 1 -(q-Q)
3 _.(q - Q) F.

-(q-Q)'- E. (q - Q)- E.q)
Fig 6 A locally ,sol\ablc circuit %host inductor :onstitutie relation I,

not Iocalt. current controlled (a) The circuit diagrain (h) Inductor is a C 2 diffeomorphism and (113) describes the dvnamics.
constitutive relation.

A more geometric way of looking at the situation is as
C' 9C follows. The configuration space Z is diffeomorphic to the

graph of &(. The vector field XC,,, at (Q. E) is contained
in the tangent space T,. ,!. i.e.. X,t,. , is in parallel with
the q-axis. Therefore, if we look at X(, (, from the q-axis.
we can observe the direction and the length of X, On

the other hand. if we look at X,, from the r, -axis. %%c
S st r ) T u can detect neither the direction nor the length of X, C.I,

Fig dA grcua iahrc t, i, not cantcoordinati) he circut Finally. let us remark that even though (115) does not
diagramn ib ('apakcttoir com, ttutt~e relatio~n.

qualify as the differential equation describing the d,,-
namics. (115) is true in the sense that for the flow. x(t) ongiven b,. ,,

dt-, (x(t)

(•q- -3(it (x(t)) - F) , ( )).

transversalitv holds. Since Our geometric approach seems to bc the right tool to

ii explain %hat is happening in this example.
We will next give a perturbation result on local sohabil-

itv. Recall that AR is said to be localv hit/'rd 131. if (9)
local solvability holds and the dynamics in terms of q is holds and
given b,. det(D R)A o . for all (v.i ) n \ A, [

dqi (qQ)L (113) ("6
dt ( 11(6)

A problem arises, however, if one argues as follows: Dif- for sornef.tiied 2nr \ n matrix A. where each column of.4
ferentiating (112) with respect to t one has has either of the following forms:

dt'( d ( (0. .0. 1.0.. • .0.0........... 0B ig , ( O ( ) a t = ( D g , ) , i" = Dg ,) ,
(0.... ... .... 0.0. ...0. 1.0. . o),

=-( Dg,-), v,, = -( Dg(-)q v(. (1 14) " -- - ---

Since q=g(. (v(.)=(vc(.-E)' +Q and since (Dg,.), =

3( q -Q )2. one has Let

(Dg .)q . , i=, 3(t v
.  ((DfR)A ,i , -[r.... .F;,j (117)

This and (114) imply and suppose that F, corresponds to i., (resp.. t ,. Then

di, that particular resistor is said to be local/v roltagc ,ontrol'd
- - - E)- u,.. (115) (resp.. locally current controlled ).
di Remark: Observe that in (52) and (53), local controlled-

Is (115) another differential equation describing the dy- ness is defined for A.. whereas in the above definition.
namics of the same circuit as (113)? The answer is no? If it local controlledness is defined for each resistor provided
were. (113) and (115) must have the same qualitative that A is locally hybrid.
properties. So if (115) is the differential equation describ- Proposition 12. Given a nonlinear network 'N, assume
ing the dynamics of the circuit of Fig. 7. then v< = E is an the following:
equilibrium of the dynamics. But the corresponding value (i) .*' is locally hybrid and A, (resp. A, ) is locallN
q=g, '(E)=Q is not an equilibrium point of (113). Since charge (resp. flux) controlled.
the existence of an equilibrium point must be a coordinate- (ii) .\ n K #: 0.
free property, there should be something wrong with saying Then. by adding small linear capacitors and small linear
that (115) is the differential equation describing the dy- inductors appropriately we can obtain a new network A

namics of the circuit of Fig. 7. The point here is that v( is such that (I) ,n f 0 (2) A M . (3) :N is locally. solva-
not a C2 coordinate for X. Although the map: v,-- ble.
(VtR.V(., 1,. q) - . v . , - V-- (vC. - E ll' + Q) Proof: Pick a proper tree containing a maximum
is a' homcomorphism. it is not a C' diffeomorphism be- number of locally voltage controlled resistors and a mini-



mun number of locally current controlled resi.sto", .e j i." LUrbation in [xample 2 was alread, good enough Ito cIstire

denote its associated cotree. Partition t% i n the following not oni, trabillersaiji hut also local ,oikabilit\.
manner: E.\atnple /2: ('onsider the circuit of I.alnpic 3. Iiscrt-

ing a small linear inductor in series, one can make the
.. ............ circuit Iocal solvable.

k'llAI ,oltagc controllcd RemtarA Flh number of reacti\c elem.ents added In
r tn IPrI'Io(iiion 12 is 1n0 greater thall tlie niu inbr of react ic

Icsi,'al] U~r.cnt. d C elements added in I'ropo.vuion 4. Notice, hocxer. that In

nductors in P - troposition 12. A is required to be locall, h\ hrid. \%llereas
_h_'al -g-r in Proposilon 4, the only€ restriction on AR is that it should

r•i 2 r, in be an n r-dimensional ( submanifold. ile local h brid-

hosall currni conrolle.d less assunliption (Wino! he relaxed as the folloting Cxall-
remio,,r, in ,, i . pie shows.
Capacitor., in -, 7 I-.ample /3: (onsider tile circuit of ig. 2(a) \w.here the

The fundamental loop matrix has the following form: resistr cnstitutve relaion is gixen b\ the unit circle S
Fig. 8). It is eas\ to check .\A iK. In fact : is diff'2omot

Vf r I  1,1  r', rz. phic to S'. Since It tR ' ) r, , I and since
1 R( t

'.R )  i,./c . , we see that delit (.' R .-R 1
BII . (118) at points .A and B. Ilherefore. the circuit iN not locall,

811 B, 8 1, soixable. ()hservc that A, is not locallk i, hrid since there

B B, B is no function /R satistfilng (9) and (1l l) for ai xcd .4. Wc
clainl that ther' is tii in of making tile ci rcuit locall

The subinatrix B, , 0 because of the choice of the tree. solvable h.\ adding linear rcactie clemnlts. 1o sliox, tlls
Now insert a small linear capacitor in parallel with each let 1Z be a circuit obtained h\ adding arbitrar\ nuiber of
locallk voltage controlled resistor in '3 and insert a small reactive elements to the original circuit 'N . Then b\ 1t0).
linear inductor in series \with each locally current con- either I ! ,. I-,) N 1) I), or 'i R( 1 ,.
trolled resistor in C'. Let I /., L-1. u (U ('1. where C, is (/), 1 , ), depending on hou the reacti\e elemeints arc
the branches of the capacitors added. and ( denotes capa- added. In an\ case there are points \% here det '- 1 . '
citors. It is clear that ';T is a proper tree for the new% 0. lherefore. -N cannot be locallx solvable.
network. Statement (I ) can be proved in a similar manner Note that the perturbation i I'ropottion 12 Is a net\\ork
to the one in Proposition 4. To prove (3) observe that tle perturbation. It is not knowkn if and when one can '- e\
fundamental loop mlatrix for N~i with respect to '5 has the element perturbations as in Propottion 3 in such a manni
following form: that .N is locally solvable. One can sa\. holucer. tile circuit

of Example 13 cannot be made locallx solxable b\ element
i ,  / r, • r, it t(. t perturbations To see this let a perturbation A, of A .

, B, i be described by iR( "R, 'R ) 0. Since ., Is comlip;act. .\ IN

I (l) still compact. Therefore. there are points x\Ihcre

( l,,.jR )( .
1  

0) and (/), "R )(I t. lience

det )'l( t  0R t) some\here.
Bt I Bit B, If A, (resp. A ) is not locallx charge (rep. flu\) con-

where LI represents the inductors added. Since no resistors trolled, one may not be able to find an , w.ich Is locill

are added, AR is the same as A,. We compute the matrix lab 4. •  onsider the circuit of g. la) here the
0 ~ ~~' ) Exa pl 14:0 Conire tile cirui olow ro l(a \\her (tic

S'R) of (100) for A. It follows from (I 119) thfat resistor is linear and A( is given b\ -ig. (bi. Suppose that
B'RR--=0 . Since !R (t e v" t ). , (, t'"t ) 'R~ -z linear reactive elements are added in such a \.i\ that there
('e, i1 j ) and OR, =(j 1, it,). we have is still a proper tree. Let C', (rcsp. I.,) he the capacitance

[ (resp. inductance) matrix of the capacitors (resp. inductors
LR 

1.R). D IR,., " D %.J,,R 1 .f (120) added. let'be a proper tree for N If the resistor branch
belongs to ". then X(.x) of (t) is gien b\

Observe that the matrix of (120) depends only on ([R- iR)  R
and that if ( 6R. iR)E ( ").then (tr. iR)c AR. Since (1 20)
is obtained simply by exchanging columns of the matrix of RA'
(117). it follows from (116) that 9R( , R) is nonsingular.
By Coro/ar' 7. '7y is locally solvable. This proves (3). X(x)
Proposition IIimplies A MAK which proves (2). U "

Example I1: Consider the circuit of Example 2. Since l.
the resistors are voltage controlled, insertion of (', and (,. Since all the elements, except for the original capacitor. are
yields local solvability of the circuit. Therefore, the per- linear, and since '5 is a proper tree. one can show% that
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to'I I~( Zf') and for ( r. i) At( t,*. i,)(lV '

I Q
rank DI fn I 2b. (12

tg 5 Rcsi't4'r onstiuti'q relation for the cirmil of IxlO s Iipt I DOTIr' A ll ir

it, ~ ) serves as a global coordinate system for ' . By an argument similar to that of thle proof ofI''psn,
Since Dgiz. ), -0 somewhfere. w see that dci 9C( * - (0 9. one canl show that III is a local d If feomorphIillmI It an
t here. If the resistor belongs to 1- . then a similar argument only if ( 125) holds. Finally, since
shows that ,ii is not locally solvable. VtVn I U V(r-'. * k 12

We will next discuss relationship between local solvabil-- t ' U 1C.iIrA (I(l
itv of AN and transversality of the (n( f it, )-port N derived 44

from Oi under certain excitations. Replace capacitors and it follows fromi ( 125) that for eachi(r itf Y. & it lot.il
inductors of >N with ports. The resulting network is called diffeomnorphism. Therefore. N~ is localk\ sol\ able. (n

the (i, f 1I -port N~ derived from -N . For the purpose of versely. if ut is a local diffcomorphismi at each (,.it

convenience we will keep the same nottion for N as N then (125) and (1261 Imply ( 1221.
D)rive the capacitor ports by independent voltage sources ~ 'si~i

VS and drive the inductor ports by independent current
sources i,*. Define [ventual strict passiut(\ is ant important1 u'lt1'ItIIIII

propertY of electrical netw~orks. because ii giiartriitces that
X"t( *' i, ) 0 C(.i R l( I 'R ) EE '\VR -V( ", ' i all trajectories eventually approach a fixed comlpact subset

(121) of the configuration space 1121 1141. Rought' speaking. 111e
results oif this section sam the fotlosxi ng: Suppose that lie

This set represents thle internal constitutive relations of resistors are eventualli, strictly passis e and that e' er\
under~~~~~~~~ th exiain(C i) lal t(C ,Ii capacitor is in parallel with a large linear resistor and ce' \

dimensional subtuanifold. Recall K. A . and %& defined induIctor is in series wvith a ,,mall linear resistor. Itien all1
by (2).(74. an (7). espetivlytrajectories approach at fixed compact Subset of thec contig-

Prop~tuon 3: ive a onliearnetork~\ asume uration space. Since the above assumption Is satisfied h\
that .\(. (resp. A\,) is represented by q g( (t,.) (resr. mlost practical networks, the results, guarantee that the

g- g(i i)) and that ( Dg4 )r. (resp. ( Dg, )j, ) is Symminetric olaeand current waveforms are bounded in most net-
and positive definite. Assume also that : is anl (it( fit, ) works of practical interest.
dimensional C submanifold. Then )i7r is locally' solvable if Cnie h olwn n-omo
and only if for the ( nt. + i1 , )-port N derived f rom 'N . the Cosdrteflokn e-riolR

following holds: "I

,\,( t.*i*) MA for all ( r,,. i,*)CiEE~ (122) 0 l A :EII,, I 17

Proof: It follows from the hypothesis and ( orollarst 4 and suppose that capacitors and inductors are reciprocal.

that ."r is locally solvable if and only if w' is a local "i,11

diffeornorphism To prove sufficiency, let (t;,*. )ir )F ( ?) d 0 dtr( A dq, 4 dt,, "'10 0 1I2K I
and defineAll

[ R IRR 1n nR2"-X A( X A I If. in addition. : is simiply connected.
then 141 there is a unique real-valued function L' onl : such

where V' R R"A"~ is the projection map E( ) E x,) jL*O (I 21)

a"V. i) =( v . it,) where I' is any smooth curve on 1: connecting .r and x,,. If

and IR is defined by (9). By the definition of A .i,*). for we fix an arbitrary x,,(-!:, then (1 29) is a \%elI-defIned

each ( 1.i 1) ( . ) there is a neighborhood I'CRA21' function on 1. Clearly. E is the energi- stored in capacitors
of III,. i,1) such t hatI and inductors relative to the point x,, C- . Let IV' : R>'

A'(v.i:) V& 0)R be defined by

(124)
Usin (12) nd (23)andan agumnt imilr t th 'Rciprocity (if capacitoirs and inductors is reltetd %ith the existencc .4

Usin 112) nd 123 an an rguentsimlarto he nergv function. whereas reciprocity of a network I101 t w 0. 'lhctew~is
proo~f of Proposition 1, one sees that for each (v. ,i* )Ez defined by (M)) is retated with the existence of miux'd potentiat fuitti.'n
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W C' r--.. tV.)

t. ' IC, VC, V >
M I %1 1,o

-. jflu$i0n jUClIAIOfl WII vC C2 + "V
1 2  

I \\\ -

L
(VC',L " C >

Fig, t Diagram defining the two functions R' and WR.  (a)

Fig I0 A network which is not eventual] sriel-y passive la) The
circuit diagram. (b) Trajectories on the linear subspace 14 i)

Recall v defined by (20) and let WR and W be defined by those of W because WR depends only on AR but not on K
Fig. 9. The function 14 is the power at resistors. It follows so that one does not have to worry about Kirchhoff laws.
from Tellegen's theorem that We need the following:

dE(x(t)) Definition 4: The resistor constitutive relations repre-

d - W(x(t)). (131) sented by AR are said to be eventually strictly passive if
there is a compact subset S2R of AR such that

Recall that a network ".( is said to be eventuallV strictly K(vR. ir)>0, for all(vR.i)eAR-fR. ( 136
passit'e 1121-1141 if there is a compact subset f2C2 such
that Eventual strict passivity of AR is a physically meaningful

condition because it simply says that the resistors dissipate
W(x)>0, for all xEZ-. (132) positive power eventually. The condition is satisfied by a

The following two propositions show the importance of broad class of resistors. A natural question. then. arises:
eventual strict passivity. Does eventual strict passivity of AR imply existence of a

Proposition 14: 112]-1141 Let E be proper, i.e.. for every compact set of attraction? Another interesting question
a eR. the set (xC 1E(x) <a) is compact, and let 1.t be related to this one was raised by Smale [8]. In terms of our
eventually strictly passive. Then the set defined by terminology, the problem is rephrased as follows: Suppose

- {xejE(x)<.a,} (133) that there is a number fi>0 satisfying

a, maxE(x) (134) WR(VR.iR)f>3  . (t'2 +i2,) (137)

is compact. and for any initial state x(O), either one of the for all (v. iR) with II(vR. iR) 11 sufficiently large. Then, does
following happens: the network have a compact set of attraction? The answer

(i) There is a t, >0 such that x(i)Ei, for all t> t, to both of the two questions is no as the following example
(ii) x(t)t,' for all t--0 but lim,..x(t)E,3; shows.
The set c' contains many of the important information Example 15: Consider the circuit of Fig. 10(a). where

concerning the dynamics. In particular, the following holds: all elements are linear and element values are all equal to
Proposition 15: Under the same setting as Proposition one. Since the resistor is linear and 1-2. R, is positive

14. we have everywhere except for the origin. Hence A, is eventualh
(i) All periodic orbits and equilibria are in -. strictly passive. Observe that
(ii) In particular, equilibria lie in the set ( t' ) V = V2 t,2 + 1

(x elW(x)=0}. (135)
for 0<f#- 1/2. Therefore. (137) is satisfied. We claim thatProof: (i) lt follows from (131) and (132) that for any this circuit does notlhave acompact set of attraction. To

x(t)(--1. the energy E(x(t)) is strictly decreasing with this end let us write the dynamics in terms of

respect to t. This implies that for x(0)E X-12. the trajec- th e

tory x(t) cannot come back to x(0). Similarly. x(t) cannot
remain at x(O). dtr dt ,

(ii) Since E(x(t)) is either strictly increasing or strictly C- = it,. (2 . t .
decreasing outside the set defined by (135), the equilibria
must he located in ( 135). 0 di" +R(-i,- ,)tThe set b, in (133) is called a set of attraction since it L - =-- +1,

attracts all trajectories.

Eventual strict passivity is a property of W on 1. while di,, R(
WR is defined on A ,. These two functions may behave very dt
differently depending on the properties of i and w t. (See
Fig. 9). The properties of W. are much easier to check than Drawing trajectories, (Fig. 10(b)). one can show that there
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S inclu ,on Therefore. v A r K is a closed submanifold of K. (onse-

quently. for any compact subset 4 of A. the preimage
I A I(A) is compact. This shows that t, is proper. Therefore.

I , we need only show thai x is proper. Since X is obiousl,
Po continuous, we need only show that the preimage of a

bounded subset of R-""' is hounded. Suppose that the
A, fundamental topological hypothesis holds and let , (resp..

Fig It I)uagram lcffng 11w thC M fticlon. X and it, i, ) be the tree branch oltages (resp.. link currents) for
"T(R ) (resp.. links associated with '. ((.)). It follows from
(15) that for t ,. i.q. 0) C K.

is a linear subspace on %%hich all the tra lectorics are con-
centric circles. More specifically, the element valucssilf\ ' 140)

the condition for this bridge circuit to be balanced ill the where Q) and B are the fundamental cut set matrix and the
angular frequency one. Therefore, for any a R. the fol- fundamental loop matrix associated ,ith "t R ) and C1. ).
lowing is a solution to 138): rc,,pectis l\. I-quation ( 140) and assumption (it) imply that

.() (,(t) asilt 1.r 1 c, x(K -. l(i . , )i - x X . (1411

t,(t) i,.(f) acos t. Since ( RI, i) is a subvector of ( r,.i, %%e ha e

Since a C R is arbitrar\. the solution can have anl arbitraril\ l H c, xi K XCA- i( t' . i, X. (142)
large magnitude. Therefore. there is no compact set of This shows that the preimage of a bounded subset under X
attraction. In terms of the above coordinate system, we is bounded. Since the pioperties of X do not depend on a
have particular choice of a tree. X is proper.

Remark. Observe that in the abo\e proof we took full
"( ti<.. iI ) R(:-it ' advantage of the coordinate free property, since in (140)

( 142) we are using two different trees simultaneously.
and hence it does not satisfy' (132). Notice that any trajec- Now. experiences tell us that most networks of practical
tory starting outside the linear subspace W= 0. approaches interest have a compact set of attraction. We next justify
the origin, this observation formally by carrying out a sl;ght netork

Since (136) is satisfied by most resistors of practical rr in ou a simpl netorperturbation. The perturbation we make is simply at for-
interest, it is natural for us to seek conditions under which malization of the following hypothesis.Ever. capacitor i.
(136) implies (132). The following is a generalization of a iniparallel with a large linear resistor and every inductor is
recent result by Chua and Green [12] for a general mani- in series with a small linear resistor." Before stating the
fold. We assume that AR is closed for technical reasons. results, we need the following:
This is not a restrictive condition, however. Definition 5. A nonlinear network X. is said to be
Lemma 2: Let : be an (n + n. )-dimensional (2 sub- .tronigvlocallY solrable if

manifold and assume the following:
(i) AR is closed and eventually strictly passive, det X( x) 0, for all C A (143)

(it) lii(q, 0)11 - implies I1( r, i,_)I -t oc on A , A,. where X(x) is defined by (89) and .\ is defined b (6).
Then 2 i eventually strictly passive if the following Remarks: I) If A, (resp. A) is locally charge (rcsp.

]indamental topological Ipothesis is satisfied: flux) controlled, then '. is strongly locall\ sol\able if and
There are no loops and no cut sets consisting onl\ of only if

capacitors and inductors, or equivalently det 'XR( t , i ) #0. for all ( t',. i ) .\ ( 144)
I) there is a tree 3 R ) consisting only of resistors, where O~R( VR. iR) is defined by (1(0).

(2) there is a tree 1((L) containing all capacitors and 2) Condition (143) is stronger than (88) since for strong
inductors, local solvability the determinant should be nonzero on A

Proof. Recall the map 1rR defined by (22). Suppose and since ZCA. This condition is satisfied bi mail\ net-
that '\R is eventually strictly passive and let 12, be as in works, however. For example, the circuit of Fig 2 %ith
(136). If r is proper, then the preimage , 'W,€) is capacitors added, satisfies this condition because
compact because the preimage of a compact set under a i'
proper map is compact. It is, then. clear that the inequality 9C) (1r-,i ) D .
in (132) holds with respect to TR (SIR )- So we show that [ . I
the fundamental topological hypothesis implies that it, is rhe perturbed network of Proposiion 12 is strongly
proper. To this end let locally solvable because the matrix of (120) is nonsingular

S:1-.K (139) forall(vR. iR)CAR.
Proposition lo: Given a nonlinear network 'N, assume

be the inclusion map and consider the map X defined by the following:
Fig. II. Since A, is assumed to be closed. A is also closed. (i) . is strongly locally sAlvable.

. . . .. . .. I rI1| I ii m I.I
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(ii) .\R is closed and eventually strictly passive, course, (145)-(149) are written as

(iii) 11(q. O)H - c implies 11(v,., 11)11 x on A, x A By
Insert a large linear resistor gk, k= l,-.. in parallel . Qr (166)
with every capacitor and insert a small linear resistor r, '11'V
k = 1.....n 1 , in series with every inductor. Then (r, i,q. 0) E A. (167)
(I) knK:A 0 and =Ank) is an (nCm +ntw)-i( 6

dimensional C 2 submanifold, Comparing (145)-(149) with (150), (153). (156)..(160)

(2) A is locally solvable, (167), we see that the differences between -N and N\ are in

(3) -.c is eventually strictly passive. Consequently Ac has the last two terms of (160). (161), and (162)- (165). Therc-

a compact set of attraction. fore. T is described by

Proof: (I) In terms of a proper tree , the original B
T Q I vj + = "( .)

network :\ is described by . G () 68)

VR, + BRRVR, + BR.V( =0 (145) ( v, i~q.4o?)E,\ (169)
V1_ + BI. RtR , + Bl.(-- =< 0 ( 146 )

iR, - BrR ir -8 1'Ri =0 (147) (Vt, , , J ,-) H j (17(0)

i, - Br(iR - BTr.i - 0 (148) where

(v.i.q. 0)EA. (149) 'Re i. R, i

Let " 'Ur where rq represents branches of r,'s. It is f . '
clear that is a proper tree for "N. Decompose t and i as r

v=( vR , v, v:vRq,.j R, LI t'R, r

1=(ir. ig. it_,. i.. i,.4 ) G (171)

where g and r denote the variables associated with g,'s and
r,'s. Then -5 is described by

VR, +BRRVR, +BR(1%( =
0  (150) H= (172)

V, +B.RVR, +BLcVc+V, =O (151)

vX+v'.=0 (152)
Now let x 0 AnK# 0 and let Ube a bounded neighbor-

'R -BrTRiR - B/RiI-r" 0 (153) hood of x0 in Rt" ,nI". Since the set (.A K) n' is a
i. - BrI i , - BIT' i, - ig -- 0 (154) bounded submanifold. small perturbations of Kn U do not

destroy transversality of An U and K nl U and hence theN

i, -is. =0 (155) do not destroy nonemptiness of (An U )L ( Kn , U). There-

(v.i,q. S)GA (156) fore, if g, is large enough and if r, is small enough, then
1IFII and 11G11 in (168) are small enough to guarantee

ix =g v9 (157) nonemptiness of the intersection of (168) and (169). Since
v, :r, (158) (170) does not destroy this nonemptiness. we have An nk-

0. We show A )K later.
where (2) Since (D, I,),,.q, (resp. (Df!),,. 0)) is a square

g- diag(g,....,g,, ). rdiagr,.-. .). (159) matrix. (89) implies that if .)I is strongly locally solvable.
then (D., fl),,, .q,(resp. (Di, f, ),. ) is nonsingular on A

Eliminating rg. . i. and 4. we see that .)I is described by (resp. A,), i.e.. A, (resp. A,) is locally charge (resp. flux)
(150). (153), (156), and controlled. Therefore, we can use Corollary 7 to check local

v1, + BL RVR, + BL.(VC + riL =0 (160) solvability of ',1. Observe that

i B BT il.+g Iv, 0 (161) [R tR. UR)]c - (162) R( 'R )I i,-g 'e (173), -g V(, (162) Mv,--re

and that the fundamental loop matrix h for ' i is given b,c, : i ,(164)
V l(16 45 ) VR e V1  V k VR , V ( CR(,ri4- (165)

Let us rewrite (145)-(149) and (160)- (165) more concisely. [ 8 RR BR 1. (174)

Let B and Q be the fundamental loop matrix and the[ I B R B, I

fundamental cut set matrix for .'X, respectively. Then, of !
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It follows from this thatRR 'Rr R (. LLR E . Ii ~

V, r, C L 2

(175) C? r 11
VR j Vr 0 2

.R [B R I] V,. Fig. 12. Perturbation oE ne ork of Fig. , Ma).

Let Re, =(VRI )* tR, (VR,). ir, =('Ri-') and iR,

(R,i,). Then It follows from condition (ii) that there is a compact set

-D. -(D, , ,,fR)8R CA .such that (136) holds. For any a-0, let

Ig 11(v"R ii i, {(vj. i a_9 I - .

Then the set R R X 2 g, has the property that

k,,IR k,(f1 )BR
O 1'(76)WR >0 on A, -S2,(176)

I because g and r are diagonal matrices with positive ele-
ments. Finally, to show that the fundamental topological

DiEeIR + (D:,, JR)RR hypothesis is satisfied, let R,. L. r,. and gL represent the
branches of the resistors in 'q, inductors in C. the added

DI R1 resistors r,5 and the added resistors g, *s. Then '31( R )s RR= ! +I . Uri Ug, is a tree for 'r which consists only of resistors.

Also '(CI)=UL is a tree for A which contains all
capacitors and inductors. It follows from Lemma 2 and

Di, fR + ( Di, f, )BA R condition (iii) that .7k is eventually strictly passive. J

(177) Example 16: Consider the circuit of Example 15. Since
the circuit is linear, all the conditions of Propostion 16 are
satisfied. The perturbed circuit is shown in Fig. 12. It

It follows from (176), (177). and (100) that follows from Proposition 16 that this perturbed circuit has a

D,,,, fR -(D,,R f ,)BRR Di f, -(Di f ,) J, ,-

XR,(eRR) 1:: 1 E~R (179)

It is clear that "C R depends only on ( r,. i') and that compact set of attraction. In fact the linear subspace It -0
lde9 CR( . in)j =IdetXl R(VR.in. (179) in Fig. I1Xb) degenerates into the origin and any closed

ball centered at the origin serves as a compact set of
Now if (R'. 'R ) . R, then (trR. 'R ) R. because attraction.

A 0{(iR.iR))( tr.i,) EAR .i Y r,-- ri ," Remark: As we have seen JR( /?1).R(t'R. ii for
( IR. 'R )EHR( ). But (CI, 'R ) e *R(--1 does not necessarik

(180) imply (R. i')R R(:) even though (R'R ~i)G. . Recal-

By the strong local solvability assumption, we have ling Corollary 7 and Definition 5. one sees why we needed

Idet XR( r#. iR )I >0. for all ( r . 'N ) N. the strong local solvability hypothesis.
We will next replace strong local solvability with another

This and (179) imply condition.

IdetX,(. .1'N)1 >0. for all ( .-R ,xN ( '). Propositio'; '7: Replace the "strong local solvabilitv"
It follows from (orolldriy 7 that At is locally solvable. By hypothesis in ',opositon /6 with the following hypothesis:

(i)' v is a global diffeomorphism.
Proposit IIo . we have xmxK. Therefore, £ is an (n( + n ) Then, under the same perturbation as in Proposi.tn 1e). the
-dimensional C submanifold. same conclusion holds.

(3) The resistor constitutive relations AR for .T^( is de- Proof.: he preceding proof for Propostion /6 remains

scribed by ( 18 ) where iR - (trR. r,. r,). i. ( (iN. id.) applicable except for the fact that is an (n, 4 n4 )- I
Therefore. the function 4'. corresponding to WR is given dimensional C2 submanifold and that .t is locally solvable.
by In order to prove this recall (145) (149). lvypothesis (i)'

b ;'R(vN.IR) W,(rn.iN) +v4rq 'tt+iri,, implies that (v.i,q, ) is expressible as a C'2 function of

-i. .. NOR
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yR of current controlled resistors and let il he its associated

R:9,1R) cotree. Insert a small linear capacitor in parallel with each
'4 1voltage controlled resistor in and insert a small linear

inductor in series with each current controlled resistor in C.
7 - R ('all the resulting network " .

(b) Insert a large linear resistor g, in parallel with each
capacitor of "\ and insert a small linear resistor r, in series

(a) b) with each inductor of 1 . ('all the resulting network .r.Then the following hold:_
Fig. 13. A nonlinear network which becomes eventually strictly passive

after perturbation. (a) The circuit diagram- (b) Resistor con.titutive (1) AnK#: and 2 A K is an (n( -n + A)-
relaion dimensional -2 submanifold where A is the number of

reactive elements added, A and k are the resistor constitu-
tive relations and the Kirchhoff space of 2L. respectively.

(v. iq,) - '(q. ). (2) "+ is locally solvable,
Recall (150)-(158) and set v , + v, +- v, iL i, -i 9. Then (3) . is eventually strictly passive. Consequently 'r( has
(150), (151). (153), (154), and (156) are exactly the same as a compact set of attraction.
(145)-(149). Therefore, Proof. (1) It is clear that one can prove A n Kf o in

(VR. V,v ',,iRi', i t,- )=,' '(q,4,). (181) a similar manner to the proof of Proposition 16. We will
It follows from (152), (155), (157), (158) and (181) that prove AIK later.

( v, i, i, i) is also a C 2 function of (q. 0). Therefore, all (2). (3) We first claim that ':r is strongly locall, solvable.
the variables of 1!k are expressible as a C 2 function of To this end partition (v. i) of :X as in the proof of

Proposition 16. Since A, is assumed to be globally hybrid.

it can he represented as follows:

If follows from the way r was determined that is a
global diffeomorphism and hence so is ,*. Therefore. 2 is i1, -f, ( , v. r; i l,. i ) 0
an (n( + n )-dimensional C2 submanifold. Since i is a
global diffeomorphism, it is a local diffeomorphism. It v'l 11.1r ' i' 0i'): 0

follows from Theorem I that At is locally solvable. 0 t1. --fj(rt,. tli it,. il) 0
Example 17: Consider the network of Fig. 13(a) where

the resistor is described by Fig. 13(b). The resistor is where V and I denote voltage controlled and current
eventually strictly passive. It is easy to show that v is a controlled resistors, respectively. We write these equations
global diffeomorphism. Therefore we can make the same as

perturbation as in Example 16 so that the network will Mf( 'iR ) =-
have a compact set of attraction. It follows from (120) that for AX we have

We will next relax the "strong local solvability" hypothe-
sis and the global diffeomorphism assumption, while im- jCR( "R f =[D,,.,, 5) 

"R D ., ..j

posing a stronger condition on A.t to derive a different
perturbation result. Recall that A R is said to be globally v,1 V/, i. if
hybrid 13] if [. IA {f yR.- i, ) h( X)[ t

where y=(y,....) x=(x,...,x,,,) and if yA is the I
current (resp., voltage) of the kth resistor then x, is the [
voltage (resp.. current) of the kth resistor. If yA is the
current (resp., voltage), then that particular resistor is Therefore. fR( , I/?) is a constant nonsingular matrix and
called voltage controlled (resp.. current controlled). The X is strongly locally solvable. Clearly..\ + A, because no
following result says that most practical networks can be resistors are added in (a). This implies that ARt is eventu-
perturbed in such a manner that the resulting network are ally strictly passive. Since AX satisfies the hypothesis of
locally solvable and have compact sets of attraction. Proposition /6. by taking procedure (b), we obtain C., which

Theorem 2: Given a nonlinear network N assume the is locally solvable. AMK and eventually strictly passive. L-
following: Example IN: Consider the network of Fig. 14(a), where

(i) Af is closed, globally hybrid and eventually strictly RI and R 2 are as in Fig. 2(b). Other elements are linear. By
passive. a similar reasoning to that of Example 2. one can show that

(ii) A,(resp. A,.) is locally charge (resp. flux) controlled A MK. Pick the proper tree (C1,C.C 1 . RA. Then
and f1(q,#)ll--- oo implies ff(,.. it 4)I- oc on A, xA,. applying pr(edure (a) of Theorem 2, we obtain IN which is

(iii) AnK#06 0. strongly locally solvable (Fig. 14(h)). The network A" of
Perturb C.I in the following manner: Fig. 14(b) does not satisfy the fundamental topological
(a) Let ';T be a proper tree containing a maximum num- hypothesis, however, because there is a capacitor-only cut

ber of voltage controlled resistors and a minimum number set. Insert large linear resistors. g|, g2. g,. and g4 according
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4R 
R 

DJv,,
i R 3 _

^& 

R5

c, R2T,, iA R  1i M (A.3)

CC2 C3
R4 R4  DiRf -

- K Equations (A.2) and (A.3) imply that AR ir (K) if and
Ia only if (A. I) holds. LJ

Knowing that A MK is equivalent to AR M 7T(K ). one
R, sees that Proposition 3 can be proved in a similar manner

(A , to that of Theorem 3 in 13] which is the same as the proof
94 of (ii-a) of Theorem 2 of 131. Proof of (ii-a) of Theorem 2

uses Lemmas 1, 2, and 4 of [31. It is easy to show that
2 RAI Lemma I is true for C 2 submanifolds. Lemma 2 has

nothing to do with differentiability. Therefore we need to
only show that Lemma 4 is true in the C 2 category. We
state this in the following:

Fig. 14. A nonlinear network which becomes k alt solvable and even-

tuallK 'tnctli passive after perturbations. (a) Original netmork AZ. (b) Lemma B. Let A be an n X n matrix such that 11 A -- iJ
Perturbed netuork -5(. (c Perturbed net,,ork ."I is sufficiently small. Then there are neighborhoods U, and

U2 of the origin of R" with U- C U, and there is a (2
function G: R" -+R" such that

to proedure (hi and obtain \ (Fig. 14(c)). Theorem 2 says 0) G=A on U ,that 11 has a compact set of attraction. (ii) G=iA off U , where ia is the identity map of R".
Remark The offent adde wher There is the idnitbaeo 'Remark: The elements added in Theorem 2 can be (iii) G is arbitrarily close to i, in the strong ( topology.

thought of as parasitic elements of ,rc. Therefore Theorem Proof: Let 0t2(ia; d(-)) be a sufficiently small neigh-
2 formally justifies the fact that in most networks of borhood of id in C 2(R",R") with respect to the strong (
practical interest, voltage and current waveforms eventu- topology. Since c(x)>0 for all xER", there are numbers
ally approach a fixed compact set. >O and 8>0 such that ( x)t> for all x with 1IxJ<. Let

APPENDIX Sn satisfy 0<6n<8. Then there is a C2 function (bump

Proof of Proposition 3. We will first prove the follow- function 161) IL: R" -R such that

ing: ( 1 if 1X< 0  (A.4)
L.emma A. Suppose that A. (resp. AI) is locally voltage 0 .0 if 11 X 1i (A.4)

(resp. current) controlled. Then A0K if and only if AM 0 0 There is a k>0 such that
wr( K ). where v, is defined by (20).

Proof" If A., (resp. A 1.) is locally voltage (resp. cur- iI(DA),II<k, i1( D) II<k (A.5)
rent) controlled, then v (resp. i,) serves as a local coordi- for all xeR. Now, choose A close enough to i, so that
nate system for A( (resp. Al.). This implies that (Dye)p,
(resp. (Dil,) , ) in (42) is nonsingular. By elementary opera- I A - Il 1< ( (A.6)
tions, one can show that (41) holds if and only if I + 8)( 1 +2k

and defineD~r., -eR - B,, G(x) "',(x)ax +( I- ,( x))x.
Dv,,, Il2( '(

rank D2n. We will show that G 'ld(ia- ()). Since p.(x)=tO for
DiR 11 x 11 :II:xl 6, we need to check the C2 size of G ia, only for

i Bre B1 11x11<8. Since G(x)-xzz1A(xHAx -- x), we have. using
Di ",, (A.4)- (A.6). thatI . . B~~~~~ B/R ~ (Al) ix<.SneGx-~x{x- .w ae sn

Next, observe that IIG(x) -- x1i + II( DG),- 1114 i1( D 2G), 1

V R, -Bft(. I . 1 4- g(x )IlA x - x ll+ l(D tp ), II IIA x -- x iH

1 _B(. + i (x)I A - Il l+ &I(OxI)l kiAx -x l+ 211( DA) , H 1A Ill

T .w K I 11A - 111(14 11 + k 1xil + I -+ k 11 x11 + 2A,

B~ftB/ft I IA -Ii}(l +)(- 2k<.
Take U ' (xER"llxII<8} and U. : (xER"(lHxH<A}.

(A.2) Then all the properties are satisfied. r]
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